HyperAIHyperAI

Command Palette

Search for a command to run...

PointGrid: A Deep Network for 3D Shape Understanding

Truc Le Ye Duan

Abstract

This paper presents a new deep learning architecture called PointGrid that is designed for 3D model recognition from unorganized point clouds. The new architecture embeds the input point cloud into a 3D grid by a simple, yet effective, sampling strategy and directly learns transformations and features from their raw coordinates. The proposed method is an integration of point and grid, a hybrid model, that leverages the simplicity of grid-based approaches such as VoxelNet while avoid its information loss. PointGrid learns better global information compared with PointNet and is much simpler than PointNet++, Kd-Net, Oct-Net and O-CNN, yet provides comparable recognition accuracy. With experiments on popular shape recognition benchmarks, PointGrid demonstrates competitive performance over existing deep learning methods on both classification and segmentation.


Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing

HyperAI Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp