HyperAIHyperAI

Command Palette

Search for a command to run...

Optimizing Network Structure for 3D Human Pose Estimation

Yizhou Wang Xiaoxuan Ma Chunyu Wang Hai Ci

Abstract

A human pose is naturally represented as a graph where the joints are the nodes and the bones are the edges. So it is natural to apply Graph Convolutional Network (GCN) to estimate 3D poses from 2D poses. In this work, we propose a generic formulation where both GCN and Fully Connected Network (FCN) are its special cases. From this formulation, we discover that GCN has limited representation power when used for estimating 3D poses. We overcome the limitation by introducing Locally Connected Network (LCN) which is naturally implemented by this generic formulation. It notably improves the representation capability over GCN. In addition, since every joint is only connected to a few joints in its neighborhood, it has strong generalization power. The experiments on public datasets show it: (1) outperforms the state-of-the-arts; (2) is less data hungry than alternative models; (3) generalizes well to unseen actions and datasets.


Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing

HyperAI Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp