Command Palette
Search for a command to run...
Leveraging LDA Feature Extraction to Augment Human Activity Recognition Accuracy
Leveraging LDA Feature Extraction to Augment Human Activity Recognition Accuracy
Sadegh Madadi Hadi Farahani Elaheh Sharifi Milad Vazan
Abstract
This research introduces a hybrid feature extraction approach that combines Linear Discriminant Analysis (LDA) and Multilayer Perceptron (MLP) methods to address the challenges of reducing feature vector dimensionality and accurately classifying smartphone-based human activities. Moreover, to refine activity classification accuracy, Support Vector Machine (SVM) optimization with Stochastic Gradient Descent (SGD) is employed. LDA, a statistical tool, is leveraged to derive a new feature space for data projection, enhancing class separation and test feature label prediction. The proposed approach, named LMSS, was evaluated using the UCI-HAR dataset and compared with state-of-the-art models. The results demonstrate that the proposed approach outperformed the best-performing method over this dataset. It achieved an accuracy rate of 99.52%, precision of 99.55%, recall of 99.53%, and an F1-score of 99.54%, highlighting the effectiveness of the proposed method in accurately classifying the data.