HyperAIHyperAI

Command Palette

Search for a command to run...

Learning Shape-Motion Representations from Geometric Algebra Spatio-Temporal Model for Skeleton-Based Action Recognition

Xing Liu Rongjie Xia Qinghua Huang Yanshan Li

Abstract

Skeleton-based action recognition has been widely applied in intelligent video surveillance and human behavior analysis. Previous works have successfully applied Convolutional Neural Networks (CNN) to learn spatio-temporal characteristics of the skeleton sequence. However, they merely focus on the coordinates of isolated joints, which ignore the spatial relationships between joints and only implicitly learn the motion representations. To solve these problems, we propose an effective method to learn comprehensive representations from skeleton sequences by using Geometric Algebra. Firstly, a frontal orientation based spatio-temporal model is constructed to represent the spatial configuration and temporal dynamics of skeleton sequences, which owns the robustness against view variations. Then the shape-motion representations which mutually compensate are learned to describe skeleton actions comprehensively. Finally, a multi-stream CNN model is applied to extract and fuse deep features from the complementary shape-motion representations. Experimental results on NTU RGB+D and Northwestern-UCLA datasets consistently verify the superiority of our method.


Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing

HyperAI Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp