HyperAIHyperAI
17 days ago

Learning Local Feature Descriptors for Multiple Object Tracking

{Viktor Porokhonskyy, Dmytro Borysenko, Dmytro Mykheievskyi}
Learning Local Feature Descriptors for Multiple Object Tracking
Abstract

The present study aims at learning class-agnostic embedding, which is suitable for Multiple Object Tracking (MOT). We demonstrate that the learning of local feature descriptors could provide a sufficient level of generalization. Proposed embedding function exhibits on-par performance with its dedicated person re-identification counterparts in their target domain and outperforms them in others. Through its utilization, our solutions achieve state-of-the-art performance in a number of MOT benchmarks, which includes CVPR'19 Tracking Challenge.

Learning Local Feature Descriptors for Multiple Object Tracking | Latest Papers | HyperAI