HyperAIHyperAI

Command Palette

Search for a command to run...

Improving Document-level Relation Extraction via Contextualizing Mention Representations and Weighting Mention Pairs

Ping Jiang;Xian-Ling Mao;Binbin Bian;Heyan Huang

Abstract

Document-level relation extraction (RE) has attracted considerable attention, because a large number of relational facts are expressed in multiple sentences. Recently, encoder-aggregator based models have become promising for document-level RE. However, these models have two shortcomings: (i) they cannot obtain contextualized representations of a mention by low computational cost, when the mention is involved in different entity pairs; (ii) they ignore the different weights for the mention pairs of a target entity pair. To tackle the above two problems, in this paper, we propose a novel encoder-attender-aggregator model, which introduces two attenders between the encoder and aggregator. Specifically, a mutual attender is first employed on the selected head and tail mentions to efficiently produce contextualized mention representations. Then, an integration attender is utilized to weight the mention pairs of a target entity pair. Extensive experiments on two document-level RE datasets show that the proposed model performs better than the state-of-the-art baselines. Our codes are publicly available at "https://github.com/nefujiangping/EncAttAgg".


Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing

HyperAI Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp