HyperAIHyperAI

Command Palette

Search for a command to run...

Graph-based Dependency Parsing with Graph Neural Networks

Man Lan Yuanbin Wu Tao Ji

Abstract

We investigate the problem of efficiently incorporating high-order features into neural graph-based dependency parsing. Instead of explicitly extracting high-order features from intermediate parse trees, we develop a more powerful dependency tree node representation which captures high-order information concisely and efficiently. We use graph neural networks (GNNs) to learn the representations and discuss several new configurations of GNN{'}s updating and aggregation functions. Experiments on PTB show that our parser achieves the best UAS and LAS on PTB (96.0{%}, 94.3{%}) among systems without using any external resources.


Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing

HyperAI Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp