HyperAIHyperAI

Command Palette

Search for a command to run...

Generating Diverse and Natural 3D Human Motions From Text

Li Cheng Xingyu Li Wei Ji Sen Wang Xinxin Zuo Shihao Zou Chuan Guo

Abstract

Automated generation of 3D human motions from text is a challenging problem. The generated motions are expected to be sufficiently diverse to explore the text-grounded motion space, and more importantly, accurately depicting the content in prescribed text descriptions. Here we tackle this problem with a two-stage approach: text2length sampling and text2motion generation. Text2length involves sampling from the learned distribution function of motion lengths conditioned on the input text. This is followed by our text2motion module using temporal variational autoencoder to synthesize a diverse set of human motions of the sampled lengths. Instead of directly engaging with pose sequences, we propose motion snippet code as our internal motion representation, which captures local semantic motion contexts and is empirically shown to facilitate the generation of plausible motions faithful to the input text. Moreover, a large-scale dataset of scripted 3D Human motions, HumanML3D, is constructed, consisting of 14,616 motion clips and 44,970 text descriptions. Extensive empirical experiments demonstrate the effectiveness of our approach. Project webpage: https://ericguo5513.github.io/text-to-motion/.


Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing

HyperAI Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp