HyperAIHyperAI

Command Palette

Search for a command to run...

Enhanced Pix2pix Dehazing Network

Yuan Xie Jingying Huang Yizi Chen Yanyun Qu

Abstract

In this paper, we reduce the image dehazing problem to an image-to-image translation problem, and propose Enhanced Pix2pix Dehazing Network (EPDN), which generates a haze-free image without relying on the physical scattering model. EPDN is embedded by a generative adversarial network, which is followed by a well-designed enhancer. Inspired by visual perception global-first theory, the discriminator guides the generator to create a pseudo realistic image on a coarse scale, while the enhancer following the generator is required to produce a realistic dehazing image on the fine scale. The enhancer contains two enhancing blocks based on the receptive field model, which reinforces the dehazing effect in both color and details. The embedded GAN is jointly trained with the enhancer. Extensive experiment results on synthetic datasets and real-world datasets show that the proposed EPDN is superior to the state-of-the-art methods in terms of PSNR, SSIM, PI, and subjective visual effect.


Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing

HyperAI Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Enhanced Pix2pix Dehazing Network | Papers | HyperAI