HyperAIHyperAI
8 days ago

ENCASE: An ENsemble ClASsifiEr for ECG classification using expert features and deep neural networks

{Yuxi Zhou, Qingyun Wang, Shenda Hong, Meng Wu, Junyuan Shang, Hongyan Li, Junqing Xie}
Abstract

We propose ENCASE to combine expert features and DNNs (Deep Neural Networks) together for ECG classification. We first explore and implement expert features from statistical area, signal processing area and medical area. Then, we build DNNs to automatically extract deep features. Besides, we propose a new algorithm to find the most representative wave (called centerwave) among long ECG record, and extract features from centerwave. Finally, we combine these features together and put them into ensemble classifiers. Experiment on 4-class ECG data classification reports 0.84 F1 score, which is much better than any of the single model.

ENCASE: An ENsemble ClASsifiEr for ECG classification using expert features and deep neural networks | Latest Papers | HyperAI