HyperAIHyperAI

Command Palette

Search for a command to run...

Effective Self-Training for Parsing

David McClosky Eugene Charniak and Mark Johnson

Abstract

We present a simple, but surprisingly effective, method of self-training a two-phase parser-reranker system using readily available unlabeled data. We show that this type of bootstrapping is possible for parsing when the bootstrapped parses are processed by a discriminative reranker. Our improved model achieves an f-score of 92.1%, an absolute 1.1% improvement (12% error reduction) over the previous best result for Wall Street Journal parsing. Finally, we provide some analysis to better understand the phenomenon.


Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing

HyperAI Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp