HyperAIHyperAI

Command Palette

Search for a command to run...

Dynamic Scene Deblurring With Parameter Selective Sharing and Nested Skip Connections

Jiaya Jia Xiaoyong Shen Xin Tao Hongyun Gao

Abstract

Dynamic Scene deblurring is a challenging low-level vision task where spatially variant blur is caused by many factors, e.g., camera shake and object motion. Recent study has made significant progress. Compared with the parameter independence scheme [19] and parameter sharing scheme [33], we develop the general principle for constraining the deblurring network structure by proposing the generic and effective selective sharing scheme. Inside the subnetwork of each scale, we propose a nested skip connection structure for the nonlinear transformation modules to replace stacked convolution layers or residual blocks. Besides, we build a new large dataset of blurred/sharp image pairs towards better restoration quality. Comprehensive experimental results show that our parameter selective sharing scheme, nested skip connection structure, and the new dataset are all significant to set a new state-of-the-art in dynamic scene deblurring.


Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing

HyperAI Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp