HyperAIHyperAI

Command Palette

Search for a command to run...

Dynamic Image Networks for Action Recognition

Stephen Gould Hakan Bilen Efstratios Gavves Andrea Vedaldi Basura Fernando

Abstract

We introduce the concept of dynamic image, a novel compact representation of videos useful for video analysis especially when convolutional neural networks (CNNs) are used. The dynamic image is based on the rank pooling concept and is obtained through the parameters of a ranking machine that encodes the temporal evolution of the frames of the video. Dynamic images are obtained by directly applying rank pooling on the raw image pixels of a video producing a single RGB image per video. This idea is simple but powerful as it enables the use of existing CNN models directly on video data with fine-tuning. We present an efficient and effective approximate rank pooling operator, speeding it up orders of magnitude compared to rank pooling. Our new approximate rank pooling CNN layer allows us to generalize dynamic images to dynamic feature maps and we demonstrate the power of our new representations on standard benchmarks in action recognition achieving state-of-the-art performance.


Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing

HyperAI Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Dynamic Image Networks for Action Recognition | Papers | HyperAI