HyperAIHyperAI

Command Palette

Search for a command to run...

Classifying the Ideological Orientation of User-Submitted Texts in Social Media

Rickard Ewetz Adan Ernesto Vela Kamalakkannan Ravi

Abstract

With the long-term goal of understanding how language is used and evolves within online communities, this work explores the application of natural language processing techniques to classify text articles according to their ideological orientation (i.e., conservative or liberal). We first collect a balanced corpus of text articles posted to the online communities r/Liberal and r/Conservative from the social media website Reddit. Using the corpus, we develop and apply three classifiers. The baseline classifier is a Bayes model that accounts for each text article’s web domain, as such, classification is independent of content. Next, we develop a support vector machine (SVM) model with term frequency-inverse document frequency (TF-IDF) features; this approach highlight differences in language using a count-based feature-space to differentiate text articles. Last, we evaluate the context-based transformer (RoBERTa) model and discuss its under-performance relative to the baseline and SVM models.


Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing

HyperAI Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp