Command Palette
Search for a command to run...
Beyond Characters: Subword-level Morpheme Segmentation
Beyond Characters: Subword-level Morpheme Segmentation
Andre F. T. Martins Ben Peters
Abstract
This paper presents DeepSPIN’s submissions to the SIGMORPHON 2022 Shared Task on Morpheme Segmentation. We make three submissions, all to the word-level subtask. First, we show that entmax-based sparse sequence-tosequence models deliver large improvements over conventional softmax-based models, echoing results from other tasks. Then, we challenge the assumption that models for morphological tasks should be trained at the character level by building a transformer that generates morphemes as sequences of unigram language model-induced subwords. This subword transformer outperforms all of our character-level models and wins the word-level subtask. Although we do not submit an official submission to the sentence-level subtask, we show that this subword-based approach is highly effective there as well.