HyperAIHyperAI

Command Palette

Search for a command to run...

Aspect-Based Sentiment Analysis Using Bitmask Bidirectional Long Short Term Memory Networks

Binh Thanh Do

Abstract

This paper introduces a new method to classify sentiment polarity for aspects in product reviews. We call it bitmask bidirectional long short term memory networks. It is based on long short term memory (LSTM) networks, which is a frequently mentioned model in natural language processing. Our proposed method uses a bitmask layer to keep attention on aspects. We evaluate it on reviews of restaurant and laptop domains from three popular contests: SemEval-2014 task 4, SemEval-2015 task 12, and SemEval-2016 task 5. It obtains competitive results with state-of-the-art methods based on LSTM networks. Furthermore, we demonstrate the benefit of using sentiment lexicons and word embeddings of a particular domain in aspect-based sentiment analysis.


Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing

HyperAI Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Aspect-Based Sentiment Analysis Using Bitmask Bidirectional Long Short Term Memory Networks | Papers | HyperAI