A single channel sleep-spindle detector based on multivariate classification of EEG epochs: MUSSDET.
BACKGROUND:Studies on sleep-spindles are typically based on visual-marks performed by experts, however this process is time consuming and presents a low inter-expert agreement, causing the data to be limited in quantity and prone to bias. An automatic detector would tackle these issues by generating large amounts of objectively marked data.NEW METHOD:Our goal was to develop a sensitive, precise and robust sleep-spindle detection method. Emphasis has been placed on achieving a consistent performance across heterogeneous recordings and without the need for further parameter fine tuning. The developed detector runs on a single channel and is based on multivariate classification using a support vector machine. Scalp-electroencephalogram recordings were segmented into epochs which were then characterized by a selection of relevant and non-redundant features. The training and validation data came from the Medical Center-University of Freiburg, the test data consisted of 27 records coming from 2 public databases.RESULTS:Using a sample based assessment, 53% sensitivity, 37% precision and 96% specificity was achieved on the DREAMS database. On the MASS database, 77% sensitivity, 46% precision and 96% specificity was achieved. The developed detector performed favorably when compared to previous detectors. The classification of normalized EEG epochs in a multidimensional space, as well as the use of a validation set, allowed to objectively define a single detection threshold for all databases and participants.CONCLUSIONS:The use of the developed tool will allow increasing the data-size and statistical significance of research studies on the role of sleep-spindles.