HyperAIHyperAI

Command Palette

Search for a command to run...

A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images

Guangchao Li; Liu Boyi; Huang Liangcun; Shangguan Deodato; Jiang Peng; Tapete Chenxiao; Yue Zhang

Abstract

Change detection in high resolution remote sensing images is crucial to the understanding of land surface changes. As traditional change detection methods are not suitable for the task considering the challenges brought by the fine image details and complex texture features conveyed in high resolution images, a number of deep learning-based change detection methods have been proposed to improve the change detection performance. Although the state-of-the-art deep feature based methods outperform all the other deep learning-based change detection methods, networks in the existing deep feature based methods are mostly modified from architectures that are originally proposed for single-image semantic segmentation. Transferring these networks for change detection task still poses some key issues. In this paper, we propose a deeply supervised image fusion network (IFN) for change detection in high resolution bi-temporal remote sensing images. Specifically, highly representative deep features of bi-temporal images are firstly extracted through a fully convolutional two-stream architecture. Then, the extracted deep features are fed into a deeply supervised difference discrimination network (DDN) for change detection. To improve boundary completeness and internal compactness of objects in the output change maps, multi-level deep features of raw images are fused with image difference features by means of attention modules for change map reconstruction. DDN is further enhanced by directly introducing change map losses to intermediate layers in the network, and the whole network is trained in an end-to-end manner. IFN is applied to a publicly available dataset, as well as a challenging dataset consisting of multi-source bi-temporal images from Google Earth covering different cities in China. Both visual interpretation and quantitative assessment confirm that IFN outperforms four benchmark methods derived from the literature, by returning changed areas with complete boundaries and high internal compactness compared to the state-of-the-art methods.


Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing

HyperAI Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp