HyperAIHyperAI

Command Palette

Search for a command to run...

19 days ago

DR. WELL: Dynamic Reasoning and Learning with Symbolic World Model for Embodied LLM-Based Multi-Agent Collaboration

Narjes Nourzad Hanqing Yang Shiyu Chen Carlee Joe-Wong

DR. WELL: Dynamic Reasoning and Learning with Symbolic World Model for Embodied LLM-Based Multi-Agent Collaboration

Abstract

Cooperative multi-agent planning requires agents to make joint decisions with partial information and limited communication. Coordination at the trajectory level often fails, as small deviations in timing or movement cascade into conflicts. Symbolic planning mitigates this challenge by raising the level of abstraction and providing a minimal vocabulary of actions that enable synchronization and collective progress. We present DR. WELL, a decentralized neurosymbolic framework for cooperative multi-agent planning. Cooperation unfolds through a two-phase negotiation protocol: agents first propose candidate roles with reasoning and then commit to a joint allocation under consensus and environment constraints. After commitment, each agent independently generates and executes a symbolic plan for its role without revealing detailed trajectories. Plans are grounded in execution outcomes via a shared world model that encodes the current state and is updated as agents act. By reasoning over symbolic plans rather than raw trajectories, DR. WELL avoids brittle step-level alignment and enables higher-level operations that are reusable, synchronizable, and interpretable. Experiments on cooperative block-push tasks show that agents adapt across episodes, with the dynamic world model capturing reusable patterns and improving task completion rates and efficiency. Experiments on cooperative block-push tasks show that our dynamic world model improves task completion and efficiency through negotiation and self-refinement, trading a time overhead for evolving, more efficient collaboration strategies.

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
DR. WELL: Dynamic Reasoning and Learning with Symbolic World Model for Embodied LLM-Based Multi-Agent Collaboration | Papers | HyperAI