HyperAIHyperAI

Command Palette

Search for a command to run...

2 days ago

MultiPL-MoE: Multi-Programming-Lingual Extension of Large Language Models through Hybrid Mixture-of-Experts

Qing Wang Xue Han Jiahui Wang Lehao Xing Qian Hu Lianlian Zhang Chao Deng Junlan Feng

MultiPL-MoE: Multi-Programming-Lingual Extension of Large Language Models through Hybrid Mixture-of-Experts

Abstract

Despite LLMs' excellent code creation capabilities, multilingual code generation remains extremely challenging. To address this, we intent to improve the multi-programming-lingual (MultiPL) performance of the base LLMs while retaining the most popular ones using restricted computational resources. We consider MultiPL to be a special case of multiple natural languages and propose a MultiPL extension of LLMs utilizing a hybrid mixture of experts (MoE), called MultiPL-MoE. Specifically, MultiPL-MoE combines two paired MoEs to optimize expert selection at both the token and segment levels. The token-level MoE is a standard upcycling MoE structure with a shared expert and a novel gate weight normalization approach that aids in the final fusion with the segment-level MoE. The segment-level MoE incorporates two innovative designs to better capture the syntactic structure and contextual patterns of programming languages: First, using a sliding window to partition the input token sequence into multiple segments; Then, adopting an expert-choice routing strategy that allows experts to select the top-k segments. The results of the experiment proved the effectiveness of MultiPL-MoE.

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp