HyperAIHyperAI

Command Palette

Search for a command to run...

2 months ago

Algorithmic Collective Action with Multiple Collectives

Claudio Battiloro, Pietro Greiner, Bret Nestor, Oumaima Amezgar, Francesca Dominici

Algorithmic Collective Action with Multiple Collectives

Abstract

As learning systems increasingly influence everyday decisions, user-side steering via Algorithmic Collective Action (ACA)-coordinated changes to shared data-offers a complement to regulator-side policy and firm-side model design. Although real-world actions have been traditionally decentralized and fragmented into multiple collectives despite sharing overarching objectives-with each collective differing in size, strategy, and actionable goals, most of the ACA literature focused on single collective settings. In this work, we present the first theoretical framework for ACA with multiple collectives acting on the same system. In particular, we focus on collective action in classification, studying how multiple collectives can plant signals, i.e., bias a classifier to learn an association between an altered version of the features and a chosen, possibly overlapping, set of target classes. We provide quantitative results about the role and the interplay of collectives' sizes and their alignment of goals. Our framework, by also complementing previous empirical results, opens a path for a holistic treatment of ACA with multiple collectives.

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp