HyperAIHyperAI

Command Palette

Search for a command to run...

An Analysis of the Variance of Diffusion-based Speech Enhancement

Bunlong Lay Timo Gerkmann

Abstract

Diffusion models proved to be powerful models for generative speech enhancement. In recent SGMSE+ approaches, training involves a stochastic differential equation for the diffusion process, adding both Gaussian and environmental noise to the clean speech signal gradually. The speech enhancement performance varies depending on the choice of the stochastic differential equation that controls the evolution of the mean and the variance along the diffusion processes when adding environmental and Gaussian noise. In this work, we highlight that the scale of the variance is a dominant parameter for speech enhancement performance and show that it controls the tradeoff between noise attenuation and speech distortions. More concretely, we show that a larger variance increases the noise attenuation and allows for reducing the computational footprint, as fewer function evaluations for generating the estimate are required


Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing

HyperAI Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp