HyperAIHyperAI

Command Palette

Search for a command to run...

Prompting Large Vision-Language Models for Compositional Reasoning

Timothy Ossowski Ming Jiang Junjie Hu

Abstract

Vision-language models such as CLIP have shown impressive capabilities in encoding texts and images into aligned embeddings, enabling the retrieval of multimodal data in a shared embedding space. However, these embedding-based models still face challenges in effectively matching images and texts with similar visio-linguistic compositionality, as evidenced by their performance on the recent Winoground dataset. In this paper, we argue that this limitation stems from two factors: the use of single vector representations for complex multimodal data, and the absence of step-by-step reasoning in these embedding-based methods. To address this issue, we make an exploratory step using a novel generative method that prompts large vision-language models (e.g., GPT-4) to depict images and perform compositional reasoning. Our method outperforms other embedding-based methods on the Winoground dataset, and obtains further improvement of up to 10% accuracy when enhanced with the optimal description.


Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing

HyperAI Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp