Command Palette
Search for a command to run...
TrickVOS: A Bag of Tricks for Video Object Segmentation
TrickVOS: A Bag of Tricks for Video Object Segmentation
Evangelos Skartados extsuperscript1*, Konstantinos Georgiadis extsuperscript1*, M. Kerim Yucel extsuperscript2*, Koskinas Ioannis extsuperscript1, Armando Domi extsuperscript1, Anastasios Drosou extsuperscript1, Bruno Manganelli extsuperscript2, Albert Saà-Garriga extsuperscript2
Abstract
Space-time memory (STM) network methods have been dominant in semi-supervised video object segmentation (SVOS) due to their remarkable performance. In this work, we identify three key aspects where we can improve such methods; i) supervisory signal, ii) pretraining and iii) spatial awareness. We then propose TrickVOS; a generic, method-agnostic bag of tricks addressing each aspect with i) a structure-aware hybrid loss, ii) a simple decoder pretraining regime and iii) a cheap tracker that imposes spatial constraints in model predictions. Finally, we propose a lightweight network and show that when trained with TrickVOS, it achieves competitive results to state-of-the-art methods on DAVIS and YouTube benchmarks, while being one of the first STM-based SVOS methods that can run in real-time on a mobile device.