HyperAIHyperAI
17 days ago

Graph Neural Rough Differential Equations for Traffic Forecasting

Jeongwhan Choi, Noseong Park
Graph Neural Rough Differential Equations for Traffic Forecasting
Abstract

Traffic forecasting is one of the most popular spatio-temporal tasks in the field of machine learning. A prevalent approach in the field is to combine graph convolutional networks and recurrent neural networks for the spatio-temporal processing. There has been fierce competition and many novel methods have been proposed. In this paper, we present the method of spatio-temporal graph neural rough differential equation (STG-NRDE). Neural rough differential equations (NRDEs) are a breakthrough concept for processing time-series data. Their main concept is to use the log-signature transform to convert a time-series sample into a relatively shorter series of feature vectors. We extend the concept and design two NRDEs: one for the temporal processing and the other for the spatial processing. After that, we combine them into a single framework. We conduct experiments with 6 benchmark datasets and 27 baselines. STG-NRDE shows the best accuracy in all cases, outperforming all those 27 baselines by non-trivial margins.

Graph Neural Rough Differential Equations for Traffic Forecasting | Latest Papers | HyperAI