HyperAIHyperAI

Command Palette

Search for a command to run...

Sparse Local Patch Transformer for Robust Face Alignment and Landmarks Inherent Relation Learning

Jiahao Xia¹, Weiwei Qu², Wenjian Huang², Jianguo Zhang*², Xi Wang³, Min Xu*¹

Abstract

Heatmap regression methods have dominated face alignment area in recent years while they ignore the inherent relation between different landmarks. In this paper, we propose a Sparse Local Patch Transformer (SLPT) for learning the inherent relation. The SLPT generates the representation of each single landmark from a local patch and aggregates them by an adaptive inherent relation based on the attention mechanism. The subpixel coordinate of each landmark is predicted independently based on the aggregated feature. Moreover, a coarse-to-fine framework is further introduced to incorporate with the SLPT, which enables the initial landmarks to gradually converge to the target facial landmarks using fine-grained features from dynamically resized local patches. Extensive experiments carried out on three popular benchmarks, including WFLW, 300W and COFW, demonstrate that the proposed method works at the state-of-the-art level with much less computational complexity by learning the inherent relation between facial landmarks. The code is available at the project website.


Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing

HyperAI Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp