HyperAIHyperAI

Command Palette

Search for a command to run...

ISDA: Position-Aware Instance Segmentation with Deformable Attention

Kaining Ying Zhenhua Wang Cong Bai Pengfei Zhou

Abstract

Most instance segmentation models are not end-to-end trainable due to either the incorporation of proposal estimation (RPN) as a pre-processing or non-maximum suppression (NMS) as a post-processing. Here we propose a novel end-to-end instance segmentation method termed ISDA. It reshapes the task into predicting a set of object masks, which are generated via traditional convolution operation with learned position-aware kernels and features of objects. Such kernels and features are learned by leveraging a deformable attention network with multi-scale representation. Thanks to the introduced set-prediction mechanism, the proposed method is NMS-free. Empirically, ISDA outperforms Mask R-CNN (the strong baseline) by 2.6 points on MS-COCO, and achieves leading performance compared with recent models. Code will be available soon.


Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing

HyperAI Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp