HyperAIHyperAI

Command Palette

Search for a command to run...

STC: Spatio-Temporal Contrastive Learning for Video Instance Segmentation

Zhengkai Jiang Zhangxuan Gu Jinlong Peng Hang Zhou Liang Liu Yabiao Wang Ying Tai Chengjie Wang Liqing Zhang

Abstract

Video Instance Segmentation (VIS) is a task that simultaneously requires classification, segmentation, and instance association in a video. Recent VIS approaches rely on sophisticated pipelines to achieve this goal, including RoI-related operations or 3D convolutions. In contrast, we present a simple and efficient single-stage VIS framework based on the instance segmentation method CondInst by adding an extra tracking head. To improve instance association accuracy, a novel bi-directional spatio-temporal contrastive learning strategy for tracking embedding across frames is proposed. Moreover, an instance-wise temporal consistency scheme is utilized to produce temporally coherent results. Experiments conducted on the YouTube-VIS-2019, YouTube-VIS-2021, and OVIS-2021 datasets validate the effectiveness and efficiency of the proposed method. We hope the proposed framework can serve as a simple and strong alternative for many other instance-level video association tasks.


Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing

HyperAI Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
STC: Spatio-Temporal Contrastive Learning for Video Instance Segmentation | Papers | HyperAI