HyperAIHyperAI

Command Palette

Search for a command to run...

Neural TMDlayer: Modeling Instantaneous flow of features via SDE Generators

Zihang Meng Vikas Singh Sathya N. Ravi

Abstract

We study how stochastic differential equation (SDE) based ideas can inspire new modifications to existing algorithms for a set of problems in computer vision. Loosely speaking, our formulation is related to both explicit and implicit strategies for data augmentation and group equivariance, but is derived from new results in the SDE literature on estimating infinitesimal generators of a class of stochastic processes. If and when there is nominal agreement between the needs of an application/task and the inherent properties and behavior of the types of processes that we can efficiently handle, we obtain a very simple and efficient plug-in layer that can be incorporated within any existing network architecture, with minimal modification and only a few additional parameters. We show promising experiments on a number of vision tasks including few shot learning, point cloud transformers and deep variational segmentation obtaining efficiency or performance improvements.


Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing

HyperAI Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp