HyperAIHyperAI
17 days ago

How Powerful is Graph Convolution for Recommendation?

Yifei Shen, Yongji Wu, Yao Zhang, Caihua Shan, Jun Zhang, Khaled B. Letaief, Dongsheng Li
How Powerful is Graph Convolution for Recommendation?
Abstract

Graph convolutional networks (GCNs) have recently enabled a popular class of algorithms for collaborative filtering (CF). Nevertheless, the theoretical underpinnings of their empirical successes remain elusive. In this paper, we endeavor to obtain a better understanding of GCN-based CF methods via the lens of graph signal processing. By identifying the critical role of smoothness, a key concept in graph signal processing, we develop a unified graph convolution-based framework for CF. We prove that many existing CF methods are special cases of this framework, including the neighborhood-based methods, low-rank matrix factorization, linear auto-encoders, and LightGCN, corresponding to different low-pass filters. Based on our framework, we then present a simple and computationally efficient CF baseline, which we shall refer to as Graph Filter based Collaborative Filtering (GF-CF). Given an implicit feedback matrix, GF-CF can be obtained in a closed form instead of expensive training with back-propagation. Experiments will show that GF-CF achieves competitive or better performance against deep learning-based methods on three well-known datasets, notably with a $70\%$ performance gain over LightGCN on the Amazon-book dataset.

How Powerful is Graph Convolution for Recommendation? | Latest Papers | HyperAI