HyperAIHyperAI

Command Palette

Search for a command to run...

Quaternion Generative Adversarial Networks

Eleonora Grassucci Edoardo Cicero Danilo Comminiello

Abstract

Latest Generative Adversarial Networks (GANs) are gathering outstanding results through a large-scale training, thus employing models composed of millions of parameters requiring extensive computational capabilities. Building such huge models undermines their replicability and increases the training instability. Moreover, multi-channel data, such as images or audio, are usually processed by realvalued convolutional networks that flatten and concatenate the input, often losing intra-channel spatial relations. To address these issues related to complexity and information loss, we propose a family of quaternion-valued generative adversarial networks (QGANs). QGANs exploit the properties of quaternion algebra, e.g., the Hamilton product, that allows to process channels as a single entity and capture internal latent relations, while reducing by a factor of 4 the overall number of parameters. We show how to design QGANs and to extend the proposed approach even to advanced models.We compare the proposed QGANs with real-valued counterparts on several image generation benchmarks. Results show that QGANs are able to obtain better FID scores than real-valued GANs and to generate visually pleasing images. Furthermore, QGANs save up to 75% of the training parameters. We believe these results may pave the way to novel, more accessible, GANs capable of improving performance and saving computational resources.


Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing

HyperAI Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Quaternion Generative Adversarial Networks | Papers | HyperAI