HyperAIHyperAI

Command Palette

Search for a command to run...

Mining Latent Classes for Few-shot Segmentation

Lihe Yang Wei Zhuo Lei Qi Yinghuan Shi Yang Gao

Abstract

Few-shot segmentation (FSS) aims to segment unseen classes given only a few annotated samples. Existing methods suffer the problem of feature undermining, i.e. potential novel classes are treated as background during training phase. Our method aims to alleviate this problem and enhance the feature embedding on latent novel classes. In our work, we propose a novel joint-training framework. Based on conventional episodic training on support-query pairs, we add an additional mining branch that exploits latent novel classes via transferable sub-clusters, and a new rectification technique on both background and foreground categories to enforce more stable prototypes. Over and above that, our transferable sub-cluster has the ability to leverage extra unlabeled data for further feature enhancement. Extensive experiments on two FSS benchmarks demonstrate that our method outperforms previous state-of-the-art by a large margin of 3.7% mIOU on PASCAL-5i and 7.0% mIOU on COCO-20i at the cost of 74% fewer parameters and 2.5x faster inference speed. The source code is available at https://github.com/LiheYoung/MiningFSS.


Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing

HyperAI Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp