HyperAIHyperAI
15 days ago

Multi-Format Contrastive Learning of Audio Representations

Luyu Wang, Aaron van den Oord
Multi-Format Contrastive Learning of Audio Representations
Abstract

Recent advances suggest the advantage of multi-modal training in comparison with single-modal methods. In contrast to this view, in our work we find that similar gain can be obtained from training with different formats of a single modality. In particular, we investigate the use of the contrastive learning framework to learn audio representations by maximizing the agreement between the raw audio and its spectral representation. We find a significant gain using this multi-format strategy against the single-format counterparts. Moreover, on the downstream AudioSet and ESC-50 classification task, our audio-only approach achieves new state-of-the-art results with a mean average precision of 0.376 and an accuracy of 90.5%, respectively.

Multi-Format Contrastive Learning of Audio Representations | Latest Papers | HyperAI