HyperAIHyperAI

Command Palette

Search for a command to run...

Entity Structure Within and Throughout: Modeling Mention Dependencies for Document-Level Relation Extraction

Benfeng Xu Quan Wang Yajuan Lyu Yong Zhu Zhendong Mao

Abstract

Entities, as the essential elements in relation extraction tasks, exhibit certain structure. In this work, we formulate such structure as distinctive dependencies between mention pairs. We then propose SSAN, which incorporates these structural dependencies within the standard self-attention mechanism and throughout the overall encoding stage. Specifically, we design two alternative transformation modules inside each self-attention building block to produce attentive biases so as to adaptively regularize its attention flow. Our experiments demonstrate the usefulness of the proposed entity structure and the effectiveness of SSAN. It significantly outperforms competitive baselines, achieving new state-of-the-art results on three popular document-level relation extraction datasets. We further provide ablation and visualization to show how the entity structure guides the model for better relation extraction. Our code is publicly available.


Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing

HyperAI Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Entity Structure Within and Throughout: Modeling Mention Dependencies for Document-Level Relation Extraction | Papers | HyperAI