HyperAIHyperAI

Command Palette

Search for a command to run...

HarDNet-MSEG: A Simple Encoder-Decoder Polyp Segmentation Neural Network that Achieves over 0.9 Mean Dice and 86 FPS

Chien-Hsiang Huang Hung-Yu Wu Youn-Long Lin

Abstract

We propose a new convolution neural network called HarDNet-MSEG for polyp segmentation. It achieves SOTA in both accuracy and inference speed on five popular datasets. For Kvasir-SEG, HarDNet-MSEG delivers 0.904 mean Dice running at 86.7 FPS on a GeForce RTX 2080 Ti GPU. It consists of a backbone and a decoder. The backbone is a low memory traffic CNN called HarDNet68, which has been successfully applied to various CV tasks including image classification, object detection, multi-object tracking and semantic segmentation, etc. The decoder part is inspired by the Cascaded Partial Decoder, known for fast and accurate salient object detection. We have evaluated HarDNet-MSEG using those five popular datasets. The code and all experiment details are available at Github. https://github.com/james128333/HarDNet-MSEG


Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing

HyperAI Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp