HyperAIHyperAI

Command Palette

Search for a command to run...

Coresets for Robust Training of Neural Networks against Noisy Labels

Baharan Mirzasoleiman Kaidi Cao Jure Leskovec

Abstract

Modern neural networks have the capacity to overfit noisy labels frequently found in real-world datasets. Although great progress has been made, existing techniques are limited in providing theoretical guarantees for the performance of the neural networks trained with noisy labels. Here we propose a novel approach with strong theoretical guarantees for robust training of deep networks trained with noisy labels. The key idea behind our method is to select weighted subsets (coresets) of clean data points that provide an approximately low-rank Jacobian matrix. We then prove that gradient descent applied to the subsets do not overfit the noisy labels. Our extensive experiments corroborate our theory and demonstrate that deep networks trained on our subsets achieve a significantly superior performance compared to state-of-the art, e.g., 6% increase in accuracy on CIFAR-10 with 80% noisy labels, and 7% increase in accuracy on mini Webvision.


Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing

HyperAI Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Coresets for Robust Training of Neural Networks against Noisy Labels | Papers | HyperAI