HyperAIHyperAI

Command Palette

Search for a command to run...

Permuted AdaIN: Reducing the Bias Towards Global Statistics in Image Classification

Oren Nuriel Sagie Benaim Lior Wolf

Abstract

Recent work has shown that convolutional neural network classifiers overly rely on texture at the expense of shape cues. We make a similar but different distinction between shape and local image cues, on the one hand, and global image statistics, on the other. Our method, called Permuted Adaptive Instance Normalization (pAdaIN), reduces the representation of global statistics in the hidden layers of image classifiers. pAdaIN samples a random permutation πππ that rearranges the samples in a given batch. Adaptive Instance Normalization (AdaIN) is then applied between the activations of each (non-permuted) sample iii and the corresponding activations of the sample π(i)π(i)π(i), thus swapping statistics between the samples of the batch. Since the global image statistics are distorted, this swapping procedure causes the network to rely on cues, such as shape or texture. By choosing the random permutation with probability ppp and the identity permutation otherwise, one can control the effect's strength. With the correct choice of ppp, fixed apriori for all experiments and selected without considering test data, our method consistently outperforms baselines in multiple settings. In image classification, our method improves on both CIFAR100 and ImageNet using multiple architectures. In the setting of robustness, our method improves on both ImageNet-C and Cifar-100-C for multiple architectures. In the setting of domain adaptation and domain generalization, our method achieves state of the art results on the transfer learning task from GTAV to Cityscapes and on the PACS benchmark.


Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing

HyperAI Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp