HyperAIHyperAI

Command Palette

Search for a command to run...

Memory-based Jitter: Improving Visual Recognition on Long-tailed Data with Diversity In Memory

Jialun Liu Jingwei Zhang Yi yang Wenhui Li Chi Zhang Yifan Sun

Abstract

This paper considers deep visual recognition on long-tailed data. To be general, we consider two applied scenarios, \ie, deep classification and deep metric learning. Under the long-tailed data distribution, the majority classes (\ie, tail classes) only occupy relatively few samples and are prone to lack of within-class diversity. A radical solution is to augment the tail classes with higher diversity. To this end, we introduce a simple and reliable method named Memory-based Jitter (MBJ). We observe that during training, the deep model constantly changes its parameters after every iteration, yielding the phenomenon of \emph{weight jitters}. Consequentially, given a same image as the input, two historical editions of the model generate two different features in the deeply-embedded space, resulting in \emph{feature jitters}. Using a memory bank, we collect these (model or feature) jitters across multiple training iterations and get the so-called Memory-based Jitter. The accumulated jitters enhance the within-class diversity for the tail classes and consequentially improves long-tailed visual recognition. With slight modifications, MBJ is applicable for two fundamental visual recognition tasks, \emph{i.e.}, deep image classification and deep metric learning (on long-tailed data). Extensive experiments on five long-tailed classification benchmarks and two deep metric learning benchmarks demonstrate significant improvement. Moreover, the achieved performance are on par with the state of the art on both tasks.


Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing

HyperAI Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Memory-based Jitter: Improving Visual Recognition on Long-tailed Data with Diversity In Memory | Papers | HyperAI