HyperAIHyperAI

Command Palette

Search for a command to run...

RepPoints V2: Verification Meets Regression for Object Detection

Yihong Chen Zheng Zhang Yue Cao Liwei Wang Stephen Lin Han Hu

Abstract

Verification and regression are two general methodologies for prediction in neural networks. Each has its own strengths: verification can be easier to infer accurately, and regression is more efficient and applicable to continuous target variables. Hence, it is often beneficial to carefully combine them to take advantage of their benefits. In this paper, we take this philosophy to improve state-of-the-art object detection, specifically by RepPoints. Though RepPoints provides high performance, we find that its heavy reliance on regression for object localization leaves room for improvement. We introduce verification tasks into the localization prediction of RepPoints, producing RepPoints v2, which provides consistent improvements of about 2.0 mAP over the original RepPoints on the COCO object detection benchmark using different backbones and training methods. RepPoints v2 also achieves 52.1 mAP on COCO \texttt{test-dev} by a single model. Moreover, we show that the proposed approach can more generally elevate other object detection frameworks as well as applications such as instance segmentation. The code is available at https://github.com/Scalsol/RepPointsV2.


Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing

HyperAI Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp