HyperAIHyperAI

Command Palette

Search for a command to run...

AutoFIS: Automatic Feature Interaction Selection in Factorization Models for Click-Through Rate Prediction

Bin Liu Chenxu Zhu Guilin Li Weinan Zhang Jincai Lai Ruiming Tang Xiuqiang He Zhenguo Li Yong Yu

Abstract

Learning feature interactions is crucial for click-through rate (CTR) prediction in recommender systems. In most existing deep learning models, feature interactions are either manually designed or simply enumerated. However, enumerating all feature interactions brings large memory and computation cost. Even worse, useless interactions may introduce noise and complicate the training process. In this work, we propose a two-stage algorithm called Automatic Feature Interaction Selection (AutoFIS). AutoFIS can automatically identify important feature interactions for factorization models with computational cost just equivalent to training the target model to convergence. In the \emph{search stage}, instead of searching over a discrete set of candidate feature interactions, we relax the choices to be continuous by introducing the architecture parameters. By implementing a regularized optimizer over the architecture parameters, the model can automatically identify and remove the redundant feature interactions during the training process of the model. In the \emph{re-train stage}, we keep the architecture parameters serving as an attention unit to further boost the performance. Offline experiments on three large-scale datasets (two public benchmarks, one private) demonstrate that AutoFIS can significantly improve various FM based models. AutoFIS has been deployed onto the training platform of Huawei App Store recommendation service, where a 10-day online A/B test demonstrated that AutoFIS improved the DeepFM model by 20.3% and 20.1% in terms of CTR and CVR respectively.


Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing

HyperAI Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
AutoFIS: Automatic Feature Interaction Selection in Factorization Models for Click-Through Rate Prediction | Papers | HyperAI