HyperAIHyperAI

Command Palette

Search for a command to run...

Get Rid of Suspended Animation Problem: Deep Diffusive Neural Network on Graph Semi-Supervised Classification

Jiawei Zhang

Abstract

Existing graph neural networks may suffer from the "suspended animation problem" when the model architecture goes deep. Meanwhile, for some graph learning scenarios, e.g., nodes with text/image attributes or graphs with long-distance node correlations, deep graph neural networks will be necessary for effective graph representation learning. In this paper, we propose a new graph neural network, namely DIFNET (Graph Diffusive Neural Network), for graph representation learning and node classification. DIFNET utilizes both neural gates and graph residual learning for node hidden state modeling, and includes an attention mechanism for node neighborhood information diffusion. Extensive experiments will be done in this paper to compare DIFNET against several state-of-the-art graph neural network models. The experimental results can illustrate both the learning performance advantages and effectiveness of DIFNET, especially in addressing the "suspended animation problem".


Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing

HyperAI Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Get Rid of Suspended Animation Problem: Deep Diffusive Neural Network on Graph Semi-Supervised Classification | Papers | HyperAI