HyperAIHyperAI

Command Palette

Search for a command to run...

Graph-Bert: Only Attention is Needed for Learning Graph Representations

Jiawei Zhang Haopeng Zhang Congying Xia Li Sun

Abstract

The dominant graph neural networks (GNNs) over-rely on the graph links, several serious performance problems with which have been witnessed already, e.g., suspended animation problem and over-smoothing problem. What's more, the inherently inter-connected nature precludes parallelization within the graph, which becomes critical for large-sized graph, as memory constraints limit batching across the nodes. In this paper, we will introduce a new graph neural network, namely GRAPH-BERT (Graph based BERT), solely based on the attention mechanism without any graph convolution or aggregation operators. Instead of feeding GRAPH-BERT with the complete large input graph, we propose to train GRAPH-BERT with sampled linkless subgraphs within their local contexts. GRAPH-BERT can be learned effectively in a standalone mode. Meanwhile, a pre-trained GRAPH-BERT can also be transferred to other application tasks directly or with necessary fine-tuning if any supervised label information or certain application oriented objective is available. We have tested the effectiveness of GRAPH-BERT on several graph benchmark datasets. Based the pre-trained GRAPH-BERT with the node attribute reconstruction and structure recovery tasks, we further fine-tune GRAPH-BERT on node classification and graph clustering tasks specifically. The experimental results have demonstrated that GRAPH-BERT can out-perform the existing GNNs in both the learning effectiveness and efficiency.


Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing

HyperAI Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Graph-Bert: Only Attention is Needed for Learning Graph Representations | Papers | HyperAI