HyperAIHyperAI

Command Palette

Search for a command to run...

EmbedMask: Embedding Coupling for One-stage Instance Segmentation

Hui Ying Zhaojin Huang Shu Liu Tianjia Shao Kun Zhou

Abstract

Current instance segmentation methods can be categorized into segmentation-based methods that segment first then do clustering, and proposal-based methods that detect first then predict masks for each instance proposal using repooling. In this work, we propose a one-stage method, named EmbedMask, that unifies both methods by taking advantages of them. Like proposal-based methods, EmbedMask builds on top of detection models making it strong in detection capability. Meanwhile, EmbedMask applies extra embedding modules to generate embeddings for pixels and proposals, where pixel embeddings are guided by proposal embeddings if they belong to the same instance. Through this embedding coupling process, pixels are assigned to the mask of the proposal if their embeddings are similar. The pixel-level clustering enables EmbedMask to generate high-resolution masks without missing details from repooling, and the existence of proposal embedding simplifies and strengthens the clustering procedure to achieve high speed with higher performance than segmentation-based methods. Without any bells and whistles, EmbedMask achieves comparable performance as Mask R-CNN, which is the representative two-stage method, and can produce more detailed masks at a higher speed. Code is available at github.com/yinghdb/EmbedMask.


Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing

HyperAI Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp