HyperAIHyperAI

Command Palette

Search for a command to run...

RANet: Ranking Attention Network for Fast Video Object Segmentation

Ziqin Wang; Jun Xu; Li Liu; Fan Zhu; Ling Shao

Abstract

Despite online learning (OL) techniques have boosted the performance of semi-supervised video object segmentation (VOS) methods, the huge time costs of OL greatly restrict their practicality. Matching based and propagation based methods run at a faster speed by avoiding OL techniques. However, they are limited by sub-optimal accuracy, due to mismatching and drifting problems. In this paper, we develop a real-time yet very accurate Ranking Attention Network (RANet) for VOS. Specifically, to integrate the insights of matching based and propagation based methods, we employ an encoder-decoder framework to learn pixel-level similarity and segmentation in an end-to-end manner. To better utilize the similarity maps, we propose a novel ranking attention module, which automatically ranks and selects these maps for fine-grained VOS performance. Experiments on DAVIS-16 and DAVIS-17 datasets show that our RANet achieves the best speed-accuracy trade-off, e.g., with 33 milliseconds per frame and J&F=85.5% on DAVIS-16. With OL, our RANet reaches J&F=87.1% on DAVIS-16, exceeding state-of-the-art VOS methods. The code can be found at https://github.com/Storife/RANet.


Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing

HyperAI Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp