HyperAIHyperAI

Command Palette

Search for a command to run...

Variational Recurrent Neural Networks for Graph Classification

Edouard Pineau Nathan de Lara

Abstract

We address the problem of graph classification based only on structural information. Inspired by natural language processing techniques (NLP), our model sequentially embeds information to estimate class membership probabilities. Besides, we experiment with NLP-like variational regularization techniques, making the model predict the next node in the sequence as it reads it. We experimentally show that our model achieves state-of-the-art classification results on several standard molecular datasets. Finally, we perform a qualitative analysis and give some insights on whether the node prediction helps the model better classify graphs.


Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing

HyperAI Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp