HyperAIHyperAI

Command Palette

Search for a command to run...

A Unified Model for Extractive and Abstractive Summarization using Inconsistency Loss

Wan-Ting Hsu; Chieh-Kai Lin; Ming-Ying Lee; Kerui Min; Jing Tang; Min Sun

Abstract

We propose a unified model combining the strength of extractive and abstractive summarization. On the one hand, a simple extractive model can obtain sentence-level attention with high ROUGE scores but less readable. On the other hand, a more complicated abstractive model can obtain word-level dynamic attention to generate a more readable paragraph. In our model, sentence-level attention is used to modulate the word-level attention such that words in less attended sentences are less likely to be generated. Moreover, a novel inconsistency loss function is introduced to penalize the inconsistency between two levels of attentions. By end-to-end training our model with the inconsistency loss and original losses of extractive and abstractive models, we achieve state-of-the-art ROUGE scores while being the most informative and readable summarization on the CNN/Daily Mail dataset in a solid human evaluation.


Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing

HyperAI Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp