HyperAIHyperAI

Command Palette

Search for a command to run...

STAN: Spatio-Temporal Adversarial Networks for Abnormal Event Detection

Sangmin Lee Hak Gu Kim Yong Man Ro*

Abstract

In this paper, we propose a novel abnormal event detection method with spatio-temporal adversarial networks (STAN). We devise a spatio-temporal generator which synthesizes an inter-frame by considering spatio-temporal characteristics with bidirectional ConvLSTM. A proposed spatio-temporal discriminator determines whether an input sequence is real-normal or not with 3D convolutional layers. These two networks are trained in an adversarial way to effectively encode spatio-temporal features of normal patterns. After the learning, the generator and the discriminator can be independently used as detectors, and deviations from the learned normal patterns are detected as abnormalities. Experimental results show that the proposed method achieved competitive performance compared to the state-of-the-art methods. Further, for the interpretation, we visualize the location of abnormal events detected by the proposed networks using a generator loss and discriminator gradients.


Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing

HyperAI Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp