HyperAIHyperAI

Command Palette

Search for a command to run...

Deep Competitive Pathway Networks

Jia-Ren Chang; Yong-Sheng Chen

Abstract

In the design of deep neural architectures, recent studies have demonstrated the benefits of grouping subnetworks into a larger network. For examples, the Inception architecture integrates multi-scale subnetworks and the residual network can be regarded that a residual unit combines a residual subnetwork with an identity shortcut. In this work, we embrace this observation and propose the Competitive Pathway Network (CoPaNet). The CoPaNet comprises a stack of competitive pathway units and each unit contains multiple parallel residual-type subnetworks followed by a max operation for feature competition. This mechanism enhances the model capability by learning a variety of features in subnetworks. The proposed strategy explicitly shows that the features propagate through pathways in various routing patterns, which is referred to as pathway encoding of category information. Moreover, the cross-block shortcut can be added to the CoPaNet to encourage feature reuse. We evaluated the proposed CoPaNet on four object recognition benchmarks: CIFAR-10, CIFAR-100, SVHN, and ImageNet. CoPaNet obtained the state-of-the-art or comparable results using similar amounts of parameters. The code of CoPaNet is available at: https://github.com/JiaRenChang/CoPaNet.


Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing

HyperAI Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp