HyperAIHyperAI

Command Palette

Search for a command to run...

Gradual Learning of Recurrent Neural Networks

Ziv Aharoni Gal Rattner Haim Permuter

Abstract

Recurrent Neural Networks (RNNs) achieve state-of-the-art results in many sequence-to-sequence modeling tasks. However, RNNs are difficult to train and tend to suffer from overfitting. Motivated by the Data Processing Inequality (DPI), we formulate the multi-layered network as a Markov chain, introducing a training method that comprises training the network gradually and using layer-wise gradient clipping. We found that applying our methods, combined with previously introduced regularization and optimization methods, resulted in improvements in state-of-the-art architectures operating in language modeling tasks.


Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing

HyperAI Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp