HyperAIHyperAI

Command Palette

Search for a command to run...

Neural Reranking for Named Entity Recognition

Jie Yang; Yue Zhang; Fei Dong

Abstract

We propose a neural reranking system for named entity recognition (NER). The basic idea is to leverage recurrent neural network models to learn sentence-level patterns that involve named entity mentions. In particular, given an output sentence produced by a baseline NER model, we replace all entity mentions, such as \textit{Barack Obama}, into their entity types, such as \textit{PER}. The resulting sentence patterns contain direct output information, yet is less sparse without specific named entities. For example, "PER was born in LOC" can be such a pattern. LSTM and CNN structures are utilised for learning deep representations of such sentences for reranking. Results show that our system can significantly improve the NER accuracies over two different baselines, giving the best reported results on a standard benchmark.


Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing

HyperAI Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Neural Reranking for Named Entity Recognition | Papers | HyperAI